Table of Contents

IEEOAUCTION. ...ttt et b et a e bttt e it s bt e bt e et e e bt e bt eatesbe e b e eaneebteenneeas 2
Requirements and INStallation............ccuieeiiiieiiiieiicceeee e e ettt eereeesaaeesnraaeee s 3
BILESS ettt ettt h et h e bttt eh bt e a bt bt bt et ehe e bt e nt e e bt e b ae e bt e eaee s 3

(@ 7 115 0 1 PSPPSRSO 3
BIESS FILES...... ettt b ettt h et et s he ettt e ebteenaee s 4
BLIF SOUICE FIle (DI ...ueiiiiiie ettt e ettt et e e et e e sstaeeenbaeeensaeessseeeeennnns 4
OULPUL CITCUIE FILE (LCIT)utiiiiiiiieeiietieeie ettt ettt ettt et et e et e et e e beesabe e bt e snbeensaeenseenseasnseeas 4

12 DTS 1) 3 0 212 s A (o) | TSRS 4
Bliss Header FIle ((Dh)......ccouviiiiiiieeece ettt ettt e e e e eae e e sareeeeareeenns 4

127 S Ao 1o < ol A] S (o) i TSRS 4
USTIE BIISS..eeuttiiitieitieeiiesie ettt ettt ettt st e st e et e e s st e s abeesateeabeensaeenseeesseanbeeseeenseensteeensseaeensseeennsns 5
Synthesizing BLIF FIlES.......cccuiiiiiiiiieeee ettt e s e e e sir e et e e enaee e ennnneeeas 5
Using Header Files and FOOter Files.........ccuiiiiiiiiiiiiieciececce ettt 5
Setting Output Circuit File Nam@........cccviiiiiiiiiiieciie ettt et e s e e e snaeee s 5
USING -8 COMMEANA.........oiiiiiiiieiieiie et eie ettt e ettt e et e e stteebeesteeesseesseeenseeseesaseenseeensaeseesnseenseesnseennsns 5
USING OAIN L1ttt ettt e et e et e e st eesabeeessteeessseeessaeansseeenssaesnsaaessseaesennsns 5
EXAMIPIC. ...ttt ettt et e et e et e bt et e et e e st e et e ehteeentbeeeentbeeeentaeeeenraeann 7
HEILO BIISS. ..ttt ettt ettt et e h e et b e e et e bt e et e e bt e eab e e e et eeeeneaeeas 7
Customizing Headers and FOOETS.cucuiiriiiiiieiieiiieieeie ettt et ettt st eeveeenee s 7
BIISS LADTAry ENIIS. . ueiieiiiiiiiieciie ettt ettt et et e et e et e e et eeesaaeeessaeessseaessssseaeesensnsseeeeennsnnes 8
Library ENtry FOTMAL.......cccuooiuiiiiiiiieeit ettt ettt ettt et e et e et esbaeeabeessaeenbeesaaeenseennes 8
13T 55 L) 1 s USSR USRUSRRPRPN 9
TMAIMIC. ... cneteeuteette et ettt et e s at e et e eb e et esae e e ab e e eb et et e e e bt e e bt e bt e et e e eht e e et e eh et et e e eue e e bt e ebe e et e nhe e e bt e beeebeenatee 9

17CTo] | T OO OSSO OO O URORUTORR 9

O e e et e bt h e bttt h bt a bbbt et eh e eh e at e eh b e bt e e bt e e enteeeanees 9
DITREAG. ...ttt st ettt at e et e e ettt e e eneree s 9
DIIEDOAY ..ttt bttt h ettt b e et b et e beeea 9
17531010 1 TSRS 9
CITCUTE. ettt ettt et e h e bt et e bt e bt et e bt e bt ea bt es e e bt e st e eb b et e enbees e e bt entenaeeenbeeenbeeennes 9

BlisS TeMPIate STIUCLUTE.cciiviiiiieeeiee ettt ettt ee e e st e et eestaeeesteeebaeeessaeesnsaeesensssaeeaeensssanaeens 10
BITHEAd STUCTUIE.eveiiieieeieeee ettt et sb et sttt e ebeeebaeens 10

1753 0010] FE 1o 1 0 (01115 (PSSP 10

Introduction

Bliss is an acronym for BLIF to SPICE Synthesis. It is software for converting (synthesizing) files in BLIF
(Berkeley Logic Interchange Format) to SPICE netlist.

Bliss is intended for use in academic research. Originally developed by Noriel “Eli” Mallari, Bliss was used
together with Odin Il for a Verilog to transistor-level SPICE synthesis package. Odin Il is developed by Dr. Peter
A. Jamieson, a front-end for converting Verilog to BLIF.

SPICE is simulation software for analog circuits. Using Bliss with front-ends for converting Verilog to BLIF like
Odin I, digital circuits written in Verilog can be simulated in a mixed-signal environment. This is useful for
extracting analog parameters of digital circuits, like timing, power consumption, etc.

Requirements and Installation

Bliss

Python 2.6.x or Python 2.7.x. Python can be downloaded freely from the Internet. Bliss is not tested on
Python 3.x, but technically it should run.

Windows Users: For ease of use, the path of Python should be added to the System Path, $Path.
Python is usually installed in C:\Python26 or C:\Python27.

There is no installation needed for Bliss. Just get bliss.py from the SourceForge project page,
http://sourceforge.net/projects/blissvlsi, place it in a folder, and run using Python: python bliss.py -?. This
shows available command-line options.

Default Bliss Libraries are in blisslib.zip. You can also download blisslib.zip from the SourceForge
project page. Unzip the blisslib folder in the path where you placed bliss.py. See Hello Bliss example on
how the directory structure should look like.

Odin Il

Odin Il is required for complete Verilog to SPICE synthesis. Odin Il can be downloaded from Dr. Peter A.
Jamieson's website: http://www.users.muohio.edu/jamiespa/odin_Il.html. Guides on how to compile Odin
Il in Windows and GNU/Linux are included in the download files. Please do include his work as a
reference in academic research.

A tip for compiling Odin II: compile libvpr_x first. Don't forget to uncomment #define WIN32 in ezxml.c
when compiling in GNU/Linux.

Cygwin is required for Windows users. You can download the latest version of Cygwin from
http://www.cygwin.com. Cygwin can be downloaded freely from the Internet.

For ease of use, | suggest putting the Odin Il executable (usually odin_Ill.exe) in the same folder as
bliss.py.

You can view Odin Il available command-line options by runnning odin_ll.exe: odin_lIl.exe -h.

http://www.cygwin.com/
http://www.users.muohio.edu/jamiespa/odin_II.html
http://sourceforge.net/projects/blissvlsi

Bliss Files

The following are files used by Bliss. Note that all files used by Bliss are in ASCII text format, and can be opened
using any text editor.

BLIF Source File (.blif)

Bliss accepts a BLIF file, .blif, as input. Currently Bliss only supports BLIF files outputted by Odin Il, or any BLIF
file with logic blocks similar to outputs of Odin .

Support for more BLIF files will be added as Bliss is continually developed.

Output Circuit File (.cir)
The output circuit file is the transistor-level SPICE netlist produced by Bliss.

The raw output circuit file only contains the synthesized SPICE netlist, and does not contain technology
declarations or stimuli / test signals. See the Bliss Header File (.bh) and Bliss Footer File (.bf) for details on how
to add these to the circuit.

Bliss Library Entry (.bl)

Bliss makes use of library files with extension .bl to synthesize BLIF blocks to transistor-level SPICE netlist. By
default, .bl files are stored in directory .\blisslib, and are loaded prior to synthesis.

Bliss comes with a default CMOS library, but it you can add more libraries as needed. See section Bliss Library
Entries for details.

You can set a different source directory for libraries in Bliss command-line options.

Bliss Header File (.bh)

Bliss header files contain text and declarations placed at the beginning of the SPICE netlist. You can put
technology declarations inside this file.

The use of a .bh file is optional.

Bliss Footer File (.bf)

Bliss footer files are appended to the end of the synthesized SPICE netlist. Usually test signals and stimuli are
placed in this file.

The use of a .bf file is optional.

Using Bliss

Available command-line options can be viewed by running:
python bliss.py -2

-or-

python bliss.py —--help

(the command above makes use of double dash!)

Synthesizing BLIF Files

By default, Bliss loads the file default_out.blif as BLIF source file. To synthesize other BLIF files, use the
command:

python bliss.py -b source.blif

Where source.blif is the name of your .blif source file.

Using Header Files and Footer Files

By default, Bliss makes use of the header file default_out.bh, and simply ignores it if it does not exist.
To make use of a header file:

python bliss.py -h header.bh

You can use any other header file name aside from header.bh.

By default, Bliss makes use of the footer file default_out.bf, and simply ignores it if it does not exist.
To make use of a footer file:

python bliss.py -b source.blif -f footer.bf

You can use any other fooer file name aside from footer.bf.

To combine the use of both header and footer file, and with source file as source.blif:

python bliss.py -b source.blif -h header.bh -f footer.bf

Setting Output Circuit File Name

By default, Bliss outputs the file as default_out.cir. To output the file using a different file name:

python bliss.py -o output.cir

You can use any other output file name aside from output.cir.

Using -a Command

It is convenient to make use of just one command to load .blif, .bh, .bf, and output a .cir file. To do this, use the -a
command:

python bliss.py -a source

This will load source.blif, source.bh, source.bf, and will output source.cir.

Using Odin Il

Odin Il is required for complete Verilog to transistor-level SPICE synthesis.To use Odin Il

odin II.exe -V source.v -o output.blif

Where source.v is the Verilog source file, and output.blif is the output BLIF file.

You can use any file name for Verilog source files and output.blif. Without -0 option, odin_Il.exe outputs files as
default_out.blif.

Example

Download the hellobliss.zip file to run these examples. These examples were tested on Windows, but should
also work on GNU/Linux systems. (Don't forget to replace the backslashes with forward-slashes. :))

Hello Bliss

The hellobliss folder contains hello.v, hello.blif, hello.bh, hello.bf, and hello.cir. Let's first start with unzipping the
contents.

Place the hellobliss folder inside your Bliss directory. You can delete hello.blif and hello.cir to see if Odin Il and
Bliss are producing outputs properly.

By now your directory structure should look like:

A\blisslib

.\hellobliss

A\bliss.py

.\odin II.exe

Run Odin Il

odin IT.exe -V .\hellobliss\hello.v -o .\hellobliss\hello.blif

QOdin Il should inform you that your synthesis was successful. Check if hello.blif exists in .\hellobliss

Run Bliss. Since .blif, .bh, and .bf files all have the same name, hello, we can use the -a command-line option:
python bliss.py -a .\hellobliss\hello

Bliss should inform you that You should have hello.cir in \hellobliss. Congratulations, you just synthesized your
first Verilog file!

Customizing Headers and Footers

Note that the example hello.cir will NOT RUN IN SPICE SIMULATION. This example does not define any model
files for the transistors used in Bliss library. Don't forget to add model declarations in the header file, stimulus and
test signals to the footer file when synthesizing your own circuits.

Default CMOS libraries make use of 'N' for NMOS and 'P' for PMOS transistor declarations. See Bliss Library
Entries section for details.

Bliss Library Entries

Bliss makes use of an extensible architecture for library entries. You can use the existing default library with
technology CMOS_DEFAULT, or you can make your own.

The following sections discuss the format of a Bliss library entry. Understanding the format will allow you to edit
the existing libraries or create new library entries to suit your needs.

Library Entry Format

Bliss Library Entries are saved using Python's ConfigParser format, which is similar to Windows .INI files. The
general format for setting values is <keyword> = <value>. For multi-line values, make sure that succeeding lines
start with a whitespace, like a tab or space. Additional resources about this file format can be found in the
Internet, particularly from Python discussions about the ConfigParser module.

The following is an example Bliss library entry for a 2-input AND gate (as seen from ANDZ2.bl):

[BlissLibrary]
name = AND2
tech = CMOS_DEFAULT

desc : 2-Input AND-Gate

blifhead = .names in#0 in#1 out#0

blifbody = 11 1
template = vdd gnd in#0 in#1l out#0
circuit = .SUBCKT AND2 vdd gnd vinO vinl vout

MPMOSO outsig vinO vdd vdd P L=1lu W=2u
MPMOS1 outsig vinl vdd vdd P L=1lu W=2u

MNMOSO outsig vinO nsig0 gnd N L=1lu W=2u
MNMOS1 nsig0 vinl gnd gnd N L=1lu W=2u

MPMOSINV vout outsig vdd vdd P L=1lu W=2u
MNMOSINV vout outsig gnd gnd N L=1lu W=1lu

.ENDS

Let's discuss each line in the file.

[BlissLibrary]

This line indicates a section, and that the .bl text file is a BlissLibrary entry.

name

This defines the name of the library entry. This is used when the SPICE sub-circuit is instantiated in the output
SPICE circuit.

tech

This defines the technology of the library entry. Currently Bliss does not support this, but the upcoming versions
will.

desc
A description about the library entry.

blifhead

The blifhead definition inside the BLIF source file. This is matched by Bliss versus a BLIF block (typically a
.names or .latch declaration), and assigns this library entry if there is a match. See Bliss Template Structure for
details on how Bliss parses this parameter.

blifbody

The body of the BLIF block. This is matched by Bliss versus a BLIF block (typically a .names declaration), and
assigns this library entry if there is a match. Usually this is present in .names declarations and makes use of the
BLIF PLA format, and non-existent in .latch declarations.

template

The template structure on how this library entry is instantiated as a sub-circuit in the output circuit file. See Bliss
Template Structure for details on how Bliss parses this parameter.

circuit

The equivalent SPICE sub-circuit of the library entry. Take note that all sub-circuit dependencies should be
included in this sub-circuit file, as Bliss does not currently support checking the dependencies inside library
entries.

The CMOS default library makes use of 'N' for NMOS and 'P' for PMOS. Make sure the transistor models you
use define these properly.

Bliss Template Structure

Bliss makes use of a flexible template structure to find and set inputs and outputs of a logic block. Currently two
parameters in Bliss Libraries make use of this: blithead and template.

blifhead Structure

The blifhead parameter is compared to the logic block in the BLIF file to check for a match. If a match is found,
Bliss assigns the library entry to the block, and includes the library entry into the output circuit file.

The comparison is a simple x ==y check. However, different logic blocks have different nodes, which makes the
comparison a bit complicated. For example, the following declaration defines a 2-input AND gate:

.names a b c

11 1

The following also defines a 2-input AND gate:
.names x y z

111

Bliss can recognize that both declarations above mean the same, a 2-input AND gate, using the concept of
placeholders. Bliss considers the two .name declaration above as the same 2-input AND gate using the
following structure:

blifhead = .names in#0 in#1 out#0

The keywords in#0, in#1, and out#0 are placeholders for input nodes and output nodes, respectively. To catch
a .names declaration with 4-inputs, blifhead would look like this:

blifhead = .names in#0 in#1 in#2 in#3 out#0
A peculiar case exists for a .latch declaration in BLIF:
.latch din gout re sourceclk 0

Where din is the input to the latch, qout is the output, and sourceclk is the clock input to the .latch. Essentially
this is a D flip-flop in BLIF.

For such declarations, re and 0 are fixed, with only the input/output nodes changing. If this is the case, the
blifhead parameter to match a device with this one should be:

.latch in#0 out#0 re clk O

Bliss recoginizes the same in#0 and out #0 parameters. Bliss also recognizes the placeholder, clk, to assign the
global clock node for this D flip-flop.

The following summarizes the supported placeholders for blifhead:
in#<n> - Placeholder for inputs, where <n> is the input number, with the first input defined as 0.

out#<n> - Placeholder for outputs, where <n> is the output number. Circuits typically have only one output,
out#0.

clk — Placeholder for clock input. Bliss uses the global clock node, currently set as “clk”.

template Structure

The template parameter defines how the the Bliss library entry is instantiated as a SPICE sub-circuit. An
instantiation in SPICE looks like:

X<N> param0 param1 ... paramN SUBCKT

Where X is the instantiation keyword in SPICE, <n> is a unique identifier for the instantiation, paramN the nodes
of the sub-circuit, and SUBCKT the sub-circuit name declaraion.

In Bliss, <n> is a number uniquely defining the the BLIF logic block, and the parameters are defined using the
template structure.

The template structure in Bliss allows customization of how a library entry is instantiated. Consider the example
AND2.bl example from section Bliss Library Entry. The template structure for the 2-input AND gate is defined as:

template = vdd gnd in#0 in#l out#0
If a .names declaration in blifhead looks like:
.names a b c

Placeholders would replace the items in the template parameter, and the final instantiation of the AND2 library
entry would be:

X0 vdd gnd a b c AND2
The following summarizes the supported placeholders for template:

in#<n> - Placeholder for input, where <n> is the input number with first input as 0. This is mapped to the same
input placeholders defined in blifhead.

out#<n> - Placeholder for output, where <n> is the output number. Circuits typically have one output defined as
out#0. This is mapped to the same output place holders defined in blithead.

vdd — Placeholder for global vdd. Default is “vdd” when written in block instantiation.
gnd — Placeholder for global gnd. Default is “0” when written in block instantiation.
res — Placeholder for global reset. Default is “res” when written in block instantiation.

clk — Placeholder for global clock. Default is “clk” when written in block instantiation.

	Introduction
	Requirements and Installation
	Bliss
	Odin II

	Bliss Files
	BLIF Source File (.blif)
	Output Circuit File (.cir)
	Bliss Library Entry (.bl)
	Bliss Header File (.bh)
	Bliss Footer File (.bf)

	Using Bliss
	Synthesizing BLIF Files
	Using Header Files and Footer Files
	Setting Output Circuit File Name
	Using -a Command
	Using Odin II

	Example
	Hello Bliss
	Customizing Headers and Footers

	Bliss Library Entries
	Library Entry Format
	[BlissLibrary]
	name
	tech
	desc
	blifhead
	blifbody
	template
	circuit

	Bliss Template Structure
	blifhead Structure
	template Structure

